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Research Overview
My research develops geometric and topological foundations for machine learning and artificial
intelligence. Working at the intersection of topological data analysis and AI, I create mathe-
matically rigorous frameworks that address fundamental challenges in reliability, interpretability,
and structural understanding of machine learning systems. My approach systematically integrates
classical mathematical tools—algebraic topology, computational geometry, and geometric analy-
sis—with contemporary machine learning methodologies. While modern machine learning achieves
substantial empirical success, many systems lack theoretical guarantees and fail to capture intrinsic
geometric and topological structures present in data. My research addresses these limitations by
developing principled mathematical frameworks that provide both theoretical insights and practical
improvements in AI system performance and trustworthiness.

Research Philosophy and Approach
Geometric and topological approaches capture essential structural properties that resist conven-
tional statistical analysis. Geometry provides principled frameworks for understanding intrinsic
data relationships, while topology reveals stable, qualitative features persisting across scales. These
mathematical tools prove particularly valuable for scientific applications where data exhibits com-
plex non-Euclidean structure. My research trajectory demonstrates commitment to developing
rigorous mathematical theory while maintaining focus on practical applications—evidenced by pub-
lications spanning theoretical computational topology venues (SoCG, JACT) and applied machine
learning conferences (ICML, NeurIPS, CVPR).

Major Research Contributions

1. Foundational Theory: Multiparameter Persistent Homology

Research Challenge: Classical persistent homology analyzes data varying along single parame-
ters, but many applications require tracking topological features across multiple parameters simul-
taneously. However, multiparameter persistence lacks the algebraic structure of single-parameter
cases—computing interleaving distances is NP-hard, and there is no complete discrete invariants.

Contributions: During my doctoral research, I developed algorithmic solutions to core computa-
tional challenges in multiparameter persistent homology. These contributions formed the founda-
tion of my PhD dissertation [7]:

1. Efficient Decomposition Algorithm: I designed algorithms for computing decomposi-
tions of multiparameter persistence modules [4], extending classical persistence algorithms
through matrix reduction techniques handling partial order structures. This work provides
computational foundations for practical multiparameter analysis.

2. Polynomial-Time Distance Computation: For 2-D interval decomposable modules—a
theoretically and practically important class—I created polynomial-time algorithms for com-
puting bottleneck distance [3], introducing concepts of “effective intersections” and “trivial-
izable intersections” enabling exact distance computation.
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Impact: These works, published in SoCG 2018 and JACT 2022, established computational
methods for the multiparameter TDA and remain among the most efficient known solutions. Sub-
sequent NP-hardness results by other researchers have confirmed the computational challenges.

2. Applied Theory: Topologically-Enhanced Graph Neural Networks

Research Challenge: Graph Neural Networks achieve strong performance but face fundamen-
tal limitations in capturing complex structural information due to reliance on local message-
passing. Many graphs exhibit rich topological structures—cycles, voids, higher-dimensional fea-
tures—encoding essential semantic information but remaining invisible to standard architectures.

Contributions: I developed general frameworks integrating topology with deep learning:

1. GRIL (PMLR 2023): I introduced Generalized Rank Invariant Landscape [8], a vectoriza-
tion framework achieving improved expressivity over traditional rank invariant-based repre-
sentations while maintaining stability and differentiability required for gradient-based learn-
ing. The framework enables end-to-end training of topology-aware neural networks.

2. Applications and Validation: Experiments demonstrate consistent improvements over
state-of-the-art methods, particularly in scenarios requiring understanding of complex struc-
tural patterns, with promising results in scientific applications where global structural prop-
erties prove crucial for predictions.

Impact: GRIL was selected for oral presentation at the ICML 2024 TAG-ML workshop, estab-
lishing it as a notable contribution to topologically-enhanced deep learning.

3. Interpretable AI: Topological Explainability Framework

Research Challenge: As AI systems grow increasingly complex, interpretability becomes critical
for trust and adoption in high-stakes applications. Current interpretability methods (attention
mechanisms, saliency maps) are heuristic and post-hoc, lacking theoretical guarantees. They indi-
cate “where” models attend but not “why” in terms of structural reasoning.

Contributions: My work onTopInG [6] (ICML 2025) develops principled mathematical frame-
works for topological interpretability:

1. Theoretical Foundation: I established rigorous frameworks for topological interpretability,
introducing topological discrepancy quantifying statistical differences through 1-Wasserstein
distance between graph distributions with respect to topological structure, with efficient ap-
proximating algorithm and theoretical guarantees showing optimization recovers ground truth
under certain conditions.

2. Architecture Innovation: The framework models GNN decision-making as a “persistent
rationale generation process,” using differentiable topological representations to track statis-
tically significant structural differences between decision-relevant and irrelevant subgraphs.

3. Performance: TopInG achieves up to 20% improvement over state-of-the-art methods
on both prediction accuracy and interpretation quality. The framework successfully han-
dles variable and complex rationale subgraphs where previous methods encounter difficulties,
demonstrating improved robustness to spurious correlations.

Impact: TopInG provides principled, theoretically-grounded frameworks for topological explain-
ability in graph neural networks, with applications to drug discovery, materials science, and domains
where understanding model decisions proves as critical as accuracy.
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4. Geometric Innovation: Non-Euclidean Representations

Research Challenge: Classical dimensionality reduction techniques like MDS assume Euclidean
structure, but real-world data often exhibits inherently non-Euclidean or non-metric properties.
Forcing such data into Euclidean space causes information loss and can lead to paradoxical behaviors
like increased error with higher embedding dimensions. Similarly, fundamental results in high-
dimensional geometry like the Johnson-Lindenstrauss lemma have been limited to Euclidean spaces.

Contributions: I have developed theoretical frameworks extending classical geometric methods
to non-Euclidean settings:

1. Neuc-MDS (NeurIPS 2024): I extended classical MDS theory from Euclidean to pseudo-
Euclidean spaces [1]. I introduced bilinear forms to unify representation of positive and
negative distance information, enabling effective use of negative eigenvalues carrying crucial
“non-Euclidean” information typically discarded by classical methods. I designed efficient
algorithms for jointly optimizing eigenvalue selection and bilinear form choice, with compre-
hensive theoretical analysis of error bounds and asymptotic behavior.

2. Johnson-Lindenstrauss Beyond Euclidean Geometry (NeurIPS 2025): I extended
the celebrated Johnson-Lindenstrauss lemma—a cornerstone of dimensionality reduction—to
general metric spaces beyond Euclidean geometry [2]. This work establishes fundamental the-
oretical guarantees for dimensionality reduction in non-Euclidean settings, with applications
to hyperbolic embeddings, graph metrics, and other non-Euclidean structures prevalent in
modern machine learning.

Impact: These works provide theoretical foundations for studying non-Euclidean embeddings in
modern ML models, with applications to graph representation learning, hyperbolic neural networks,
recommendation systems, and biological networks. The extension of the JL lemma opens new
possibilities for efficient processing of non-Euclidean data in high-dimensional settings.

Future Research Directions

Building upon these foundations, I plan to expand topological and geometric methods as frameworks
for developing stable, interpretable, and trustworthy AI systems:

1. Topological Representations for Foundation Models and Sequential Data

Large language models and foundation models achieve remarkable capabilities through complex in-
ternal representations whose structure remains poorly understood. A fundamental challenge arises
when these models process data that lies on or near an underlying manifold in high-dimensional
space: how do we optimally order and process observations to reveal the manifold’s intrinsic struc-
ture?

I am developing a unified mathematical framework for learnable topological representations
of sequential data through the lens of filtrations on data manifolds. The key insight is that
sequential processing—whether in autoregressive language models, visual reasoning systems, or
diffusion models—fundamentally involves studying an underlying manifold incrementally, from local
neighborhoods to global structure. By formalizing this through soft ordering functions α : X →
[0, 1] that induce filtrations Mα, we can track topological evolution via persistent homology and
optimize these orderings for specific tasks.
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This framework addresses three core theoretical challenges: 1. Learnable Filtration Construc-
tion: Designing parameterized families Mθ(X, t) that are differentiable, topologically expressive,
and respect meaningful structure (temporal coherence, causal precedence). 2. Differentiable
Topological Vectorization: Creating stable, informative vector representations from persistence
diagrams that enable gradient-based optimization. 3. Efficient Approximation: Developing
near-linear time algorithms (O(n1+δ)) for computing topological features and gradients, enabling
practical deployment at scale.

Beyond representation analysis, topological methods provide new perspectives on causal inference.
Current approaches focus on graph structures, but topological stability could identify features
persisting across interventions. My multiparameter persistence theory proves particularly valuable
for analyzing data varying along multiple causal or semantic dimensions simultaneously, connecting
topological stability with causal invariance for robust causal discovery in complex AI systems.

2. Geometric and Topological Foundations for Scientific Discovery

Scientific data exhibits rich geometric and topological structure beyond Euclidean assumptions,
requiring principled mathematical frameworks for analysis and prediction. I plan to develop inte-
grated geometric-topological methods tailored to specific scientific domains where data manifests
complex non-Euclidean properties.

Non-Euclidean Geometric Representations: Building on my work extending classical dimen-
sionality reduction and the Johnson-Lindenstrauss lemma to non-Euclidean spaces, I will develop
geometric frameworks for molecular conformations in pseudo-Euclidean spaces, hyperbolic embed-
dings for hierarchical biological networks, and metric geometry approaches for physical simulations
where data naturally resides in curved spaces.

Topological Analysis of Complex Systems: Persistent homology provides powerful tools for
understanding multi-scale structure in scientific data. I plan to apply topological methods to pro-
tein interaction networks (identifying functionally important cycles and voids), materials science
(characterizing porous structures and phase transitions), and dynamical systems (detecting bifur-
cations through topological signatures). The combination of my multiparameter persistence theory
with domain-specific filtrations enables richer characterizations than single-parameter approaches.

Integrated Geometric-Topological Frameworks: The true power emerges from combining
geometric and topological perspectives. For instance, studying molecular dynamics requires both
geometric understanding of conformational spaces and topological tracking of persistent structural
motifs across trajectories. My experience with the DL3DV-10K [5] dataset for 3D vision demon-
strates the value of such integration, which I will extend to broader scientific applications including
protein folding, materials discovery, and climate modeling.

This research direction aims to establish geometric and topological data analysis as fundamental
tools for scientific machine learning, providing both theoretical guarantees and practical computa-
tional methods for domains where traditional Euclidean assumptions fail.

Collaboration and Broader Impact
My interdisciplinary background—training under computational geometers (Tamal K. Dey) and
current collaboration with experts in network computing (Jie Gao) and non-Euclidean geometry
(Feng Luo)—positions me to build bridges between abstract mathematics and practical AI ap-
plications. I maintain productive collaborations with researchers at Purdue, Rutgers, and other
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institutions, contributing to NSF-funded projects including the AI Institute for Agent-based Cyber
Threat Intelligence.

By systematically developing rigorous geometric and topological foundations while maintaining
focus on practical applications, my research aims to advance the reliability, interpretability, and
theoretical understanding of modern machine learning systems.
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